Cognitive functioning as an additional explanatory factor in hearing and in intelligibility in noise

Sophia E. Kramer
Adriana A. Zekveld
Erwin L.J. George
S. Theo Goverts
Joost M. Festen
Tammo Houtgast

Dept. of ENT/Audiology, EMGO Institute
VU University Medical Center
Amsterdam

Cognitive functioning and hearing

Pure-tone Audiometry

Speech-Reception-in-Noise (SRT) test

Hearing Status (SRT as function of PTA)

Hearing and speech perception in the presence of background noise;
underlying components involved:
Peripheral auditory
Central auditory
Cognitive / Linguistic (explicit processing)
Psychological

...disentangle modality-specific auditory processes from more global cognitive functioning......
Speech-Reception-Threshold in noise *

- List of short everyday Dutch sentences
- Two types of masks (stationary, 16 Hz modulated-block)
- Adaptive procedure
- SRT: threshold at which 50% correctly reproduced

* (Plomp & Mimpen, 1979 b)

Visual analogue

TRT score: percentage unmasked text needed to read 50% of the sentences correctly.

28% unmasked text
34%
40%
46%
52%
58%
64%
70%
Two experiments

1. Normally hearing
 Correlation SRT en TRT

2. Hearing impaired (and normally hearing)
 Regression analysis with Speech-in-Noise as the dependent variable

Experiment 1
The relationship between
the Speech-Reception-Treshold in noise (SRT) and
the Text-Reception-Threshold (TRT: a visual analogue)

Participants, normally hearing (N=34)

Gender: 24 females, 10 males
Ages: M=34 yrs (sd 18.4), 19 – 78 years
PTA at 0.25, 0.5, 1, 2kHz: < 15 dB HL
PTA at 4 kHz: < 30 dB HL
Normal vision
Native speakers

Procedure

Two Blocks
3 x TRT
1 x SRTstat
2 x SRTmod

Result (normally hearing subjects)

R = 0.54 (p < 0.01)

R = 0.54 (p < 0.01)
Conclusion experiment 1:

About 30% of the interindividual variance in both the TRT and SRT test appears to be associated with modality a-specific skills (cognitive or linguistic).

Experiment 2

Hearing impaired and normally hearing

<table>
<thead>
<tr>
<th>Gender</th>
<th>Age range, mean</th>
</tr>
</thead>
<tbody>
<tr>
<td>Normal hearing</td>
<td>13 5/8 53 – 78, 63.5</td>
</tr>
<tr>
<td>Hearing impaired</td>
<td>21 9/12 46 – 81, 65.5</td>
</tr>
</tbody>
</table>

Normal vision
Native speakers

Aim: to predict the SRT score

Test battery

Pure-tone audiometry
2 blocks:
3 x Test-Reception-Threshold test (TRT)
2 x Speech-Reception-Threshold, modulated noise (SRTmod)
Temporal Acuity
Spectral Acuity

Regression Analysis

Dependent (to predict) variable:
Speech-Reception-in-Noise test (SRTmod)

Independent variables (predictors):
Pure-tone audiometry
Temporal acuity
Spectral acuity
Test-Reception-Test (TRT)
Age

Result Experiment 2

(Normally hearing, N=13)

<table>
<thead>
<tr>
<th>Correlations</th>
<th>SRTmod</th>
<th>p</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pure-tone Audiometry</td>
<td>0.48</td>
<td></td>
</tr>
<tr>
<td>Temporal acuity</td>
<td>-0.09</td>
<td></td>
</tr>
<tr>
<td>Spectral acuity</td>
<td>0.22</td>
<td></td>
</tr>
<tr>
<td>Test-Reception-Threshold (TRT) test</td>
<td>0.60 p < 0.01</td>
<td></td>
</tr>
<tr>
<td>Age</td>
<td>0.43</td>
<td></td>
</tr>
</tbody>
</table>

Stepwise multiple regression analysis

(Predict the outcome on the Speech-in-Noise test)

<table>
<thead>
<tr>
<th>Step</th>
<th>Predictor</th>
<th>Cum R²</th>
<th>Multiple R</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Temporal Acuity</td>
<td>0.45</td>
<td>0.85</td>
</tr>
<tr>
<td>2</td>
<td>Test-Reception-Test</td>
<td>0.73</td>
<td>0.85</td>
</tr>
</tbody>
</table>

Result Experiment 2

(Hearing impaired, N=21)
Once again

About 30% of the interindividual variance in both the TRT and SRT test appears to be associated with modality a-specific skills (cognitive or linguistic)

Conclusion experiment 1:

TRT may be clinically relevant to determine part of the origin (auditory or non-auditory) of deteriorated speech reception among hearing impaired listeners

….about 30% of the interindividual variance in both the TRT and SRT test appears to be associated with modality a-specific skills

What are the cognitive or linguistic skills?

Non-verbal cognitive tests

Cambridge Neuropsychological Testing Automated Battery (CANTAB)

• Rapid Visual Processing
• Spatial Working Memory

Language independent!

Hearing loss and cognitive decline: conflicting evidence

<table>
<thead>
<tr>
<th>Study</th>
<th>Hearing</th>
<th>Cognition</th>
<th>Relation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cacciarelli et al., 1996, N = 1332</td>
<td>Self-report (quiet)</td>
<td>MMSE</td>
<td>Yes</td>
</tr>
<tr>
<td>Bazargan et al., 2001, N = 969</td>
<td>Self-report, 1 item</td>
<td>MMSE</td>
<td>Yes</td>
</tr>
<tr>
<td>Naramura et al., 1999, N = 750</td>
<td>PTA</td>
<td>MMSE</td>
<td>Yes</td>
</tr>
<tr>
<td>Carabellese et al., 1993, N = 1791</td>
<td>Whispered voice</td>
<td>MMSE</td>
<td>No</td>
</tr>
<tr>
<td>Thomas et al., 1983</td>
<td>PTA</td>
<td>Verbal</td>
<td>Yes</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Non-verbal</td>
<td>No</td>
</tr>
</tbody>
</table>

Rapid Visual Processing (RVP), sustained attention

RVP-d (sensitivity to target sequence) and RVP-ß (tendency to respond regardless of presence of target sequence)
Spatial Working Memory

SWM-errors (number of times a used box is opened) and SWM-strategy (efficient search strategy, i.e. following a predetermined search sequence)

Regression analyses

Dependent variables:
- RVP-\(d\)’
- RVP- \(\beta\)
- SWM-errors
- SWM-strategy

Independent variables:
- Model 1: Age, IQ
- Model 2: Age, IQ, PTA

Results

Hearing loss, over and above Age and IQ, explained additional variance in:

Spatial Working Memory SWM (effective search strategy), \(\beta = -0.45\)

<table>
<thead>
<tr>
<th>Model</th>
<th>Age</th>
<th>IQ</th>
<th>PTA</th>
<th>17%</th>
<th>37%</th>
<th>30%</th>
<th>(p < 0.05)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Model 1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Model 2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- No support for the hypothesis that hearing loss (PTA) is associated with cognitive decline
- More extensive use of working memory in daily life to compensate for the loss?

Relationship cognitive functions and PTA

Correlations Cantab, SRT, TRT (N=60)

- SRT
 - \(R = 0.60\)
 - \(R = 0.43, p < 0.01\)

- TRT
 - \(R = 0.60\)
 - \(R = 0.37, p < 0.01\)

- sustained attention

Relationship cognitive functioning with SRT and TRT?
Future

HEAD: brain implant?

More details:

Thanks for your attention!